Dynein-mediated Cargo Transport In Vivo: A Switch Controls Travel Distance
نویسندگان
چکیده
Cytoplasmic dynein is a microtubule-based motor with diverse cellular roles. Here, we use mutations in the dynein heavy chain gene to impair the motor’s function, and employ biophysical measurements to demonstrate that cytoplasmic dynein is responsible for the minus end motion of bidirectionally moving lipid droplets in early Drosophila embryos. This analysis yields an estimate for the force that a single cytoplasmic dynein exerts in vivo (1.1 pN). It also allows us to quantitate dynein-mediated cargo motion in vivo, providing a framework for investigating how dynein’s activity is controlled. We identify three distinct travel states whose general features also characterize plus end motion. These states are preserved in different developmental stages. We had previously provided evidence that for each travel direction, single droplets are moved by multiple motors of the same type (Welte et al., 1998). Droplet travel distances (runs) are much shorter than expected for multiple motors based on in vitro estimates of cytoplasmic dynein processivity. Therefore, we propose the existence of a process that ends runs before the motors fall off the microtubules. We find that this process acts with a constant probability per unit distance, and is typically coupled to a switch in travel direction. A process with similar properties governs plus end motion, and its regulation controls the net direction of transport.
منابع مشابه
Dynein-Mediated Cargo Transport in Vivo
Cytoplasmic dynein is a microtubule-based motor with diverse cellular roles. Here, we use mutations in the dynein heavy chain gene to impair the motor's function, and employ biophysical measurements to demonstrate that cytoplasmic dynein is responsible for the minus end motion of bidirectionally moving lipid droplets in early Drosophila embryos. This analysis yields an estimate for the force th...
متن کاملSingle-molecule fluorescence and in vivo optical traps: how multiple dyneins and kinesins interact.
1. INTRODUCTION Kinesin and dynein walking on microtubules are the two main drivers of long-distance intracellular transport in a huge variety of systems, from neurons to melanophores. These motors, however, are oppositely directed, with (most) kinesin driving cargos toward the plus ends of microtubules whereas dynein drives cargos toward the minus ends. 1 There are only two types of dynein, cy...
متن کاملBuilding Complexity: An In Vitro Study of Cytoplasmic Dynein with In Vivo Implications
BACKGROUND Cytoplasmic dynein is the molecular motor responsible for most retrograde microtubule-based vesicular transport. In vitro single-molecule experiments suggest that dynein function is not as robust as that of kinesin-1 or myosin-V because dynein moves only a limited distance (approximately 800 nm) before detaching and can exert a modest (approximately 1 pN) force. However, dynein-drive...
متن کاملEndogenous GSK-3/shaggy regulates bidirectional axonal transport of the amyloid precursor protein.
Neurons rely on microtubule (MT) motor proteins such as kinesin-1 and dynein to transport essential cargos between the cell body and axon terminus. Defective axonal transport causes abnormal axonal cargo accumulations and is connected to neurodegenerative diseases, including Alzheimer's disease (AD). Glycogen synthase kinase 3 (GSK-3) has been proposed to be a central player in AD and to regula...
متن کاملControl of cytoplasmic dynein force production and processivity by its C-terminal domain
Cytoplasmic dynein is a microtubule motor involved in cargo transport, nuclear migration and cell division. Despite structural conservation of the dynein motor domain from yeast to higher eukaryotes, the extensively studied S. cerevisiae dynein behaves distinctly from mammalian dyneins, which produce far less force and travel over shorter distances. However, isolated reports of yeast-like force...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000